A Algebraic Algorithms for Linear Matroid Parity Problems
نویسندگان
چکیده
We present fast and simple algebraic algorithms for the linear matroid parity problem and its applications. For the linear matroid parity problem, we obtain a simple randomized algorithm with running time O(mrω−1) where m and r are the number of columns and the number of rows and ω ≈ 2.3727 is the matrix multiplication exponent. This improves the O(mrω)-time algorithm by Gabow and Stallmann, and matches the running time of the algebraic algorithm for linear matroid intersection, answering a question of Harvey. We also present a very simple alternative algorithm with running time O(mr2) which does not need fast matrix multiplication. We further improve the algebraic algorithms for some specific graph problems of interest. For the Mader’s disjoint S-path problem, we present an O(nω)-time randomized algorithm where n is the number of vertices. This improves the running time of the existing results considerably, and matches the running time of the algebraic algorithms for graph matching. For the graphic matroid parity problem, we give an O(n4)-time randomized algorithm where n is the number of vertices, and an O(n3)-time randomized algorithm for a special case useful in designing approximation algorithms. These algorithms are optimal in terms of n as the input size could be Ω(n4) and Ω(n3) respectively. The techniques are based on the algebraic algorithmic framework developed by Mucha and Sankowski, Harvey, and Sankowski. While linear matroid parity and Mader’s disjoint S-path are challenging generalizations for the design of combinatorial algorithms, our results show that both the algebraic algorithms for linear matroid intersection and graph matching can be extended nicely to more general settings. All algorithms are still faster than the existing algorithms even if fast matrix multiplication is not used. These provide simple algorithms that can be easily implemented in practice.
منابع مشابه
Algebraic Algorithms in Combinatorial Optimization
In this thesis we extend the recent algebraic approach to design fast algorithms for two problems in combinatorial optimization. First we study the linear matroid parity problem, a common generalization of graph matching and linear matroid intersection, that has applications in various areas. We show that Harvey’s algorithm for linear matroid intersection can be easily generalized to linear mat...
متن کاملParallel Complexity for Matroid Intersection and Matroid Parity Problems
Let two linear matroids have the same rank in matroid intersection. A maximum linear matroid intersection (maximum linear matroid parity set) is called a basic matroid intersection (basic matroid parity set), if its size is the rank of the matroid. We present that enumerating all basic matroid intersections (basic matroid parity sets) is in NC, provided that there are polynomial bounded basic m...
متن کاملSolving the Linear Matroid Parity Problem as a Sequence of Matroid Intersection Problems
In this paper, we present an O(r n) algorithm for the linear matroid parity problem. Our solution technique is to introduce a modest generalization, the non-simple parity problem, and identify an important subclass of non-simple parity problems called 'easy' parity problems which can be solved as matroid intersection problems. We then show how to solve any linear matroid parity problem parametr...
متن کاملShortest Disjoint S-Paths Via Weighted Linear Matroid Parity
Mader’s disjoint S-paths problem unifies two generalizations of bipartite matching: (a) nonbipartite matching and (b) disjoint s–t paths. Lovász (1980, 1981) first proposed an efficient algorithm for this problem via a reduction to matroid matching, which also unifies two generalizations of bipartite matching: (a) non-bipartite matching and (c) matroid intersection. While the weighted versions ...
متن کاملNew algorithms for linear k-matroid intersection and matroid k-parity problems
We present algorithms for the k-Matroid Intersection Problem and for the Matroid k-Pafity Problem when the matroids are represented over the field of rational numbers and k > 2. The computational complexity of the algorithms is linear in the cardinality and singly exponential in the rank of the matroids. As an application, we describe new polynomially solvable cases of the k-Dimensional Assignm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013